Health-Related Quality of Life: Comparison following Fusion for Lumbar Degenerative Spondylolisthesis with Hip & Knee Joint Replacement Surgery & with Population norms

William Sears*, Peter McCombe†, Owen Williamson‡, & Gavin White¥

Macquarie University Sydney*, Royal Brisbane Hospital†, Monash University‡, Medtronic¥ Australia

NASS
Toronto, October 15th 2008
Acknowledgements:

– Dr Robert Bourne, London Health Sciences, University of Western Ontario
– Mr Jeff Guerin, Orthotech

Disclosures:

– Author - W.S.
 » Royalties: Medtronic (Major)
 » Consulting fees: Medtronic (Major)
 » Speaking arrangements: Medtronic (Minor)
 » Research support: Medtronic (Major)
 » Trips/travel: Medtronic (Major)

– Author - P.McC.
 » Royalties: Medtronic (Major)
 » Consulting fees: Medtronic (Major)
 » Speaking arrangements: Medtronic (Minor)
 » Research support: Medtronic (Minor)
 » Trips/travel: Medtronic (Major)

– Author – O.W.
 Nil

– Author – G.W.
 » Employee: Medtronic (Major)
“Never let anyone touch your back”
• Certain surgical procedures are well regarded:
 – in the community
 – by health regulators

• Comparisons to other surgeries:
 – Rampersuad YR et al. *NASS 2007 Best Paper*
 – Polly DW et al. *Spine 2007*
Objectives

1. Measure the Quality of Life of patients (HRQL):
 - common & specific spinal disorder,
 - specific decompression and fusion technique,
 - generic measurement instrument

2. Compare these HRQL measurements with:
 - hip or knee surgery
 - total joint arthroplasty,
 - population norms
 - published, age-matched.
Methods

• Study design:
 – Prospective
 • Consecutive case series
 • 2 independent surgeons
 – Comparison with published literature (Hips, Knees, Norms)

• Inclusion Criteria:
 – Clinical:
 • neurogenic claudication
 • no previous surgery
 • failed conservative management
 – Radiological:
 • single level, lumbar spinal stenosis
 • ‘unstable’ degenerative spondylolisthesis
Female 56 yrs
Surgical Technique
Methods

• Data Collection:
 – Baseline demographics
 – SF-12
 – Physical Component Summary score (PCS-12)
 – Mental Component Summary score (MCS-12)
 – Follow-up:
 • 3, 6, 12, 24 months & last known (minimum - 12 months)
SF12

- Generic HRQoL measure
 - Physical (PCS-12) & Mental (MCS-12) components
 - Allows comparison of health status of different conditions
- A 5 point or greater score change is clinically important*

 Copay AG et al. Spine J, In press
Methods

• **Data Collection:**
 – SF-12
 • Physical Component Summary score (PCS-12)
 • Mental Component Summary score (MCS-12)
 – Follow-up:
 • 3, 6, 12, 24 months & last known (minimum - 12 months)

• **Systematic literature review:**
 – 1950 to March 2008
 – MeSH terms:
 • “Arthroplasty, Replacement, Hip” or “Arthroplasty, Replacement, Knee”
 – Keyword: “SF-12”.
 – Means and 95% CI’s

• **Population Norms:**
 – Age-matched (IQR)
Methods

Data analysis:
- Descriptive statistics: means and 95%CI’s
 - Participant demographics
 - Pre-, post-operative & change PCS-12 and MCS-12 scores.
- Wilcoxon signed-rank test:
 - Comparison of pre- and post-operative scores.
- Group comparisons
 - Overlapping 95% CIs
 - T test (unequal numbers, unequal variance assumed)
- XLSTAT version 7.5.3 software
Results

Baseline demographics

<table>
<thead>
<tr>
<th></th>
<th>Spine</th>
<th>Hip</th>
<th>Knee</th>
<th>Population norms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies Number</td>
<td>98</td>
<td>276</td>
<td>791</td>
<td>455</td>
</tr>
<tr>
<td>Females (%)</td>
<td>73*</td>
<td>44</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>Age (mean, range)</td>
<td>67 (46-90)</td>
<td>62 (22-89)</td>
<td>69 (29-83)</td>
<td>55-74</td>
</tr>
<tr>
<td>Pre-op PCS-12 (mean, 95%CI)</td>
<td>28 (27-30)</td>
<td>30 (28-31)</td>
<td>30 (29-31)</td>
<td>44 (42-45)</td>
</tr>
<tr>
<td>Pre-op MCS-12 (mean, 95%CI)</td>
<td>48 (46-50)</td>
<td>47 (46-49)</td>
<td>53 (52-54)</td>
<td>54 (53-54)</td>
</tr>
</tbody>
</table>

* p<0.001 compared with all other groups
Results

Baseline demographics

<table>
<thead>
<tr>
<th></th>
<th>Spine</th>
<th>Hip</th>
<th>Knee</th>
<th>Population norms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>98</td>
<td>276</td>
<td>791</td>
<td>455</td>
</tr>
<tr>
<td>Females (%)</td>
<td>73*</td>
<td>44</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>Age</td>
<td>67 (21-90)</td>
<td>62 (22-89)</td>
<td>69 (29-83)</td>
<td>55-74</td>
</tr>
<tr>
<td>Pre-op PCS-12</td>
<td>28 (27-30)</td>
<td>30 (28-31)</td>
<td>30 (29-31)</td>
<td>44 (42-45)</td>
</tr>
<tr>
<td>Pre-op MCS-12</td>
<td>48 (46-50)</td>
<td>47 (46-49)</td>
<td>53 (52-54)</td>
<td>54 (53-54)</td>
</tr>
</tbody>
</table>

* p<0.001 compared with all other groups
Results

PCS-12 (means ± detectable difference)

<table>
<thead>
<tr>
<th></th>
<th>Pre-Op</th>
<th>Last F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p<0.0001

Spines: n=98
Knees: n=801
Hips: n=276
Norms: n=455
Results

MCS – 12 (means, 95% CI)

- Spines
- Knees
- Hips
- Norms

* p<0.0001
Discussion

- PCS-12 change scores:
 - No difference between spine surgeons: +12 vs. +11
 - Similar between spinal fusions and large joint arthroplasties
 - Spines: +11 (95%CI: 9-14)
 - Hips: +11 (95%CI: 9-13)
 - Knees: +8 (95%CI: 7-9)
Conclusion

• \uparrowQuality of Life \textit{Spine} = \uparrowQuality of Life \textit{Knee & Hips}

• \uparrowQuality of Life \textit{Spine} \approx$ Quality of Life \textit{Norms}
References:

- Spine surgery:
 - Polly DW et al. SF-36 PCS Benefit-Cost Ratio of Lumbar Fusion Comparison to Other Surgical Interventions A Thought Experiment Spine 2007
 - Rampersud YR et al. Assessment of Health-Related Quality of Life following surgical treatment of focal symptomatic spinal stenosis compared to osteoarthritis of the hip or knee. Spine J, 2008

- THR:
 - Ostendorf et al. JBJS (Br) 2004

- TKR:
 - Hartley et al. JBJS 2002
 - Muller et al. JBJS (Br) 2006

- Population norms:
 - Avery et al. Quality of Life in South Australia measured by SF-12. Population Research & Outcome Studies Unit, Dept Human Services, South Australia, 2004